Fractional standard map: Riemann–Liouville vs. Caputo

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional standard map

Article history: Received 4 September 2009 Received in revised form 30 October 2009 Accepted 2 November 2009 Available online 5 November 2009 Communicated by C.R. Doering PACS: 05.45.Pq 45.10.Hj

متن کامل

Right Caputo Fractional Landau Inequalities

Right Caputo fractional ∥·∥p-Landau type inequalities, p ∈ (1,∞] are obtained with applications on R−.

متن کامل

Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

This paper establishes some closed formulas for RiemannLiouville impulsive fractional integral calculus and also for RiemannLiouville and Caputo impulsive fractional derivatives. Keywords—RimannLiouville fractional calculus, Caputo fractional derivative, Dirac delta, Distributional derivatives, Highorder distributional derivatives.

متن کامل

Fractional Hamilton formalism within Caputo ’ s derivative

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...

متن کامل

Practical Stability of Caputo Fractional Differential Equations by Lyapunov Functions

The practical stability of a nonlinear nonautonomous Caputo fractional differential equation is studied using Lyapunov like functions. The novelty of this paper is based on the new definition of the derivative of a Lyapunov like function along the given fractional differential equation. Comparison results using this definition for scalar fractional differential equations are presented. Several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation

سال: 2011

ISSN: 1007-5704

DOI: 10.1016/j.cnsns.2011.02.007